人工智能之计算机视觉应用专题报告20162016年,AlphaGo战胜韩国围棋选手李世乭再次引爆了全球对于人工智能的讨论和关注。计算机视觉作为人工智能技术的基础,受到深度学习的成功影响在近几年内取得了突破性的进展,正在成为影响行业发展的下一个引擎。巨头纷纷布局,市场也吸引了越来越多的人才创业参与其中。计算机视觉正在成为人工智能最火热的细分领域之一。本报告将针对计算机视觉技术发展的关键节点、市场现状及应用场景进行分析和研究。1、技术发展及市场现状分析1.人工智能是一场从终极概念到分级落地的技术演变2.人工智能所依赖的基础设施已经就位,但当前仍属于早期阶段人工智能正在像婴儿一样成长,机器不再只是通过特定的编程完成任务,而是可以通过不断地学习来掌握本领,这主要依赖高效的模型算法进行大量的数据训练,其背后需要具有高性能计算能力的软硬件作为支撑。伴随互联网的高速发展和底层技术的不断进步,人工智能所需的“能源”正在不断完善。数据量:2000年至今互联网及移动互联网的高速发展使得数据实现了量的积累,据IDC预测,2020年全球的大数据总量将为40ZB,其中有七成将会以图片和视频的形式进行存储,这为人工智能的发展提供了丰厚的土壤。深度学习算法:多伦多大学教授GeoffreyHinton(致力于神经网络和深度学习研究)的学生在业内知名的图像识别比赛ImageNet中利用深度学习的算法将识别错误率一举降低了10%,甚至超过了谷歌,深度学习进而名声大噪。2015年,微软亚洲研究院视觉计算组在该项比赛中夺冠,将系统错误率降低至3.57%,已经超过了人眼。高性能计算:GPU响应速度快、对能源需求低,可以平行处理大量琐碎信息,并在高速状态下分析海量数据,有效满足人工智能发展的需求。基础设施成本:云计算的普及和GPU的广泛使用,极大提升了运算效率,也在一定程度上降低了运营成本。IDC报告显示,数据基础设施成本正在迅速下降,从2010年的每单位9美元下降到了2015年的0.2美元。与此同时,巨头和创业公司也相继投入资源和成本进行商业化探索,但技术本身尚有足够大的成长空间,当前仍处于早期阶段。3.当前国内人工智能领域产业格局尚未成熟,上中下游均蕴含着不俗的创业空间,但进入门槛较高目前国内人工智能领域的产业发展还较为青涩,核心基础设施层面较为